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Segmentation of intact cell nuclei in three-dimen-
sional (3D) images of thick tissue sections is an
important basic capability necessary for many bio-
logical research studies. Because automatic algo-
rithms do not correctly segment all nuclei in tissue
sections, interactive algorithms may be preferable
for some applications. Existing interactive segmenta-
tion algorithms require the analyst to draw a border
around the nucleus under consideration in all succes-
sive two-dimensional (2D) planes of the 3D image.
The present paper describes an algorithm with two
main advantages over the existing method. First, the
analyst draws borders only in 2D planes that cut
approximately through the center of the nucleus

under consideration so that the nuclear borders
generally are most distinct. Second, the analyst
draws only five borders around each nucleus, and
then the algorithm interpolates the entire surface.
The algorithm results in segmented objects that
correspond to individual, visually identifiable nu-
clei. The segmented surfaces, however, may not
exactly represent the true nuclear surface. An op-
tional, automatic surface optimization algorithm can
be applied to reduce this error. Cytometry 31:275–
286, 1998. r 1998 Wiley-Liss, Inc.
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The combination of traditional histological analysis and
the ability to measure characteristics of individual cells at
the molecular level has proved to be very powerful for
studies of normal biology and of disease states such as
cancer. For example, in cancer, heterogeneity exists
among the tumor cells and so requires analysis at the
individual cell level. In addition, the relationship of the
genotype of a cell to its phenotype may depend on its
microenvironment (15). Usually such studies use tissue
sections of 4 µm in thickness. Although this is often
adequate, it cannot provide high accuracy for quantifica-
tion because only partial cells are contained in the section.
For example, using in situ hybridization (ISH) to measure
the copy number of a specific genetic loci in each cell in
the specimen underestimates the true count per cell
because of truncation of the nuclei by sectioning. Simi-
larly, measurement of the DNA content of cell nuclei in
thin sections is grossly underestimated for large nuclei
such as megakaryocytes and the Reed-Sternberg cells in
Hodgkin’s disease (7). Such problems can be largely
overcome by using thick ($20 µm) tissue specimens that
contain mainly intact nuclei (17, 37). However, this
requires the use of fluorescence labels so that the speci-

men remains largely transparent and the staining through-
out the tissue volume can be detected by three-dimen-
sional (3D; confocal) microscopy.

Extraction of quantitative measurements from confocal
images of fluorescence labeled specimens is difficult,
especially when the desired measurements are calculated
from the intensity values of the image’s voxels. It requires
preparation of the specimen so that labeling of the specific
molecular species is stoichiometric, and photobleaching,
absorption and scattering of light, background from non-
specific labeling, and autofluorescence are minimized. It
also requires careful selection of the objective lens to
minimize spherical aberrations (caused by a refractive
index difference between the specimen and medium
between the specimen and lens) and which manifest
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themselves as a worsening point spread function (PSF) and
lower signal intensity as a function of increasing focal
depth in the specimen. In addition, the lens should be
color corrected for the excitation and emission wave-
lengths used and flat-field corrected across the field of
view corresponding to the acquired image. When acquir-
ing the image, a careful balance of light exposure to the
specimen versus photobleaching must be achieved so that
the signal-to-noise ratio (SNR) is maximal over the imaged
volume.

After acquiring the images, analysis must be performed
to extract the quantitative measurements. In studies in
which accurate measurements are necessary, this may
require prior preprocessing of the images. For example, in
studies of chromatin texture, Strasters et al. (33) first had
to deconvolve their images to remove the degradation
caused by the PSF of the microscope and then to correct
them for depth-associated absorption and scattering of the
signal (34). This was followed by two image analysis steps:
the first was accurate delineation of each nucleus and the
second was measurement of the chromatin organization
for each nucleus.

The ability to segment cell nuclei inside thick tissue
sections is a valuable technique because of the wide range
of biological questions it could help address, especially in
cancer research, where cells in solid tumors are heteroge-
neous and their behavior likely depends on their environ-
ment (15). Consequently, there have been many attempts
to segment nuclei from 3D images. This can be done either
by automatic or by interactive algorithms.

Automatic algorithms have the advantage that thou-
sands of nuclei can be segmented with little human effort.
However, their performance is not completely accurate
and depends on the specimen. In general, when nuclei are
well separated and approximately spherical in shape,
automatic algorithms work well. For example, Ancin et al.
(1) applied an automatic 3D segmentation algorithm to
30-µm rat liver sections in which nuclei were not densely
packed, and thus they could correctly segment 92% of the
nuclei; however, for more irregular and more clustered
nuclei, performance deteriorated. Rigaut et al. (29) re-
ported similar results; they could automatically segment
rat lived nuclei, but not nuclei in 60-µm sections of human
in situ carcinoma of the esophagus. Another example of
the difficulties of automatic segmentation has been re-
ported by Mackin et al. (21) who found that the discrep-
ancy between the number of cells counted manually
versus automatically was up to 30% in regions of cervical
smears that would have been ignored in two-dimensional
(2D) imaging, presumably because of clustering of the
cells. Even in studies in which there is one nucleus per 3D
image, automatic segmentation may not be completely
correct. This was found to be the case by Strasters et al.
(33), who could only segment 66% of nuclei with their
automatic procedure. The remaining 34% were segmented
by a combination of fine tuning numerous parameters in
their procedure and manual editing, leading the research-
ers to conclude that the segmentation problem is not yet
solved.

Segmentation algorithms applied to cellular and medical
images are evaluated by comparison with the visual
interpretation of a human expert; thus, the only way to
achieve complete accuracy is if the algorithm exactly
matches the method used by the human eye–brain image
analysis system. Automatic algorithms are a long way from
this goal, but such performance can be achieved by
interactive algorithms. As far as we are aware, the only
existing 3D interactive segmentation algorithm for nuclei
requires the analyst to draw a border around each nucleus
under consideration in all successive 2D (xy) planes of a
3D image that contain the nucleus. This method has the
advantage of virtually no restrictions on size, shape, or
topology of the nuclei, but it is extremely time consuming
when the nucleus spans more than a few optical sections
(7,29). Furthermore, because of significant blurring in the
z direction, it is especially difficult to determine the
surfaces of nuclei in the z direction from only xy section
views when nuclei are closely packed. This problem was
experienced by Ancin et al. (1) who could not fully assess
the accuracy of an automatic segmentation algorithm
because it was impossible to determine by visual inspec-
tion of the images exactly how many nuclei were present.

In the present study, we overcame the disadvantages of
interactive segmentation by developing a more efficient
and more accurate interactive segmentation algorithm for
nuclei. Greater efficiency was achieved by limiting to five
the number of borders drawn around each nucleus.
Greater accuracy was achieved by only drawing borders in
planes that cut approximately through the center of the
nuclei so that borders were generally most distinct.

METHODS
Interactive Algorithm for Segmenting Nuclei

in 3D Images

The algorithm was written in C language as an extension
to the SCIL_Image software package (TNO, Institute of
Applied Physics, Delft, The Netherlands). It was compiled
to run on UNIX workstations.

The outline of the three-stage algorithm is as follows. In
the first stage, the analyst draws borders around the
nucleus in planes that cut approximately through the
center of the nucleus under consideration. These planes
are where the nuclear boundaries are generally sharpest
and thus most visible. The borders serve as inputs to the
second stage, which the algorithm uses to interpolate the
entire surface of the nucleus and thus achieves segmenta-
tion. However, the interpolated surface cannot be ex-
pected to match exactly the true surface of the nucleus.
Consequently, in an optional third stage, the algorithm
automatically optimizes the interpolated surfaces based on
edge strengths, which are measured as changes in the
intensity of adjacent voxels in the original image. The
results from the algorithm are not significantly affected by
the relative size of voxels in the x, y, and z dimensions, and
thus there is no requirement for the voxels to be isometric.
Each stage of the algorithm is described in detail below,
and the workflow and instructions for operating the
algorithm are listed in the appendix.
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Stage 1: Drawing borders around the nucleus. The
aim of this stage is to obtain three orthogonal, planar
borders encompassing the full extent of the nucleus being
segmented. This is accomplished by the analyst drawing
five borders around the nucleus, the first two of which are
used to estimate the orientation of the nucleus. We assume
for the purposes of calculating the orientation that the
nucleus can be modeled as an ellipsoid and thus define
orientation as the angles the principal and minor axes of
the ellipsoid make with the 3D image. Later we show by
experiment that this model leads to accurate segmentation
of nuclei that depart considerably from ellipsoids. Next,
the nucleus is rotated so that its principal and minor axes
are parallel to the x, y, and z axes of the 3D image. This
rotation ensures that the next three borders, which are

drawn around the rotated nucleus in orthogonal xy, xz,
and yz image planes that cut approximately through the
center of the nucleus, encompass the full extent of the
nucleus. If these three borders do not encompass the full
extent of the nucleus, then the segmented object that
results from interpolation in stage 2 will represent only
part of the nucleus. This error is significant for elongated
nuclei whose principal and minor axes are not parallel to
the x, y, or z axes and is illustrated in Figure 1A. Figure 1A
shows an ellipsoid with its principal axis along the line
joining the opposite corners of the 3D image. The xy
(plane abcd in Fig. 1A), xz (not shown), and yz (efgh)
image planes through the center do not show the full
extent of the ellipsoid. However, after rotation of the
ellipsoid so that its principal axis is parallel to the y axis

FIG. 1. Interactive segmentation of an ellipsoid. A: Right, ellipsoid of
major axis: minor axis: minor axis 5 3:2:1 and surface rendered using AVS
(Advanced Visual Systems Inc., Waltham, MA). The major axis is approxi-
mately along the line joining the opposite corners of the 3D image. Planes
abcd and efgh are, respectively, the xy and yz planes that cut approxi-
mately through the center of the ellipsoid. Such planes do not show the
full extent of the object. The dotted line in abcd is the first border drawn
by the analyst; the dash-dot line (white) is the principal axis calculated
from this border, and u is the angle of the principal axis with the y axis of
the image. B: Left, the ellipsoid in A right after rotation by u, so that the
principal axis in abcd of A is parallel to the y axis. Plane efgh is the yz plane
through the center of area (CoA) calculated from the first drawn border.
This efgh plane is not the same as the one shown in A, which was before
rotation. The vertical dashed line in efgh is the edge-on view of the first
drawn border (dotted line in abcd of A). It is used to direct the analyst to
the nucleus currently being segmented. The dotted line in the plane is the
second border drawn by the analyst. C: Middle, the ellipsoid after the

second rotation which makes the principal axis in ‘‘efgh’’ of B parallel to
the y axis of the 3D image, and now makes the major axis of the ellipsoid
(dash-dot line in outline of ellipsoid) parallel to the y axis of the 3D image.
‘‘ijkl’’ is the xz plane through the center of volume (CoV) of the object.
The dashed line in this plane is the edge-on view of the second drawn
border and the dotted line is the third drawn border. Planes efgh and abcd
are, respectively, the yz and xy planes through the CoV of the object. They
show the edge-on views of the previously drawn orthogonal borders
(dashed lines) and borders drawn by the analyst (dotted lines). D: Result of
segmentation (without optimization). The xy, xz, and yz planes through
the CoV of the ellipsoid (A) show the true surface (thick lines) and
interpolated surface (thin lines). E: Segmentation result (without optimiza-
tion) in plane efgh of C. F: Segmentation result (without optimization) in
plane efgh of C, which was generated by directly interpolating the three
orthogonal borders around the ellipsoid shown by the thin lines in D and
omitting the prior rotations from the orientation shown in A to that shown
in C.
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and minor axes are parallel to the x and z axes (Fig. 1C),
the xy (abcd), xz (ijkl), and yz (efgh) planes do show the
full extent of the ellipsoid and lead to accurate segmenta-
tion.

Figure 1D–F shows the segmentation results. Figure 1D
shows xy, xz, and yz planes through the center of the
ellipsoid in its original orientation (Fig. 1A), with the true
and interpolated surface of the ellipsoid represented as
thick and thin lines, respectively. The segmentation is
considered to be accurate based on quantitative evalua-
tion. Figure 1E shows the result again after rotating the
ellipsoid and segmented object to the orientation shown
in Fig. 1C. However, if the initial rotation of the ellipsoid
was omitted and the three borders indicated by the thin
lines in Figure 1D (they could have been drawn by the
analyst) were used directly to interpolate the segmented
object, the result in Figure 1F is obtained after rotating the
ellipsoid and segmented object to the orientation shown
in Figure 1C. It shows significant underestimation of the
ellipsoid (arrows in Fig. 1F) because the borders in Figure
1D do not encompass the full extent of the ellipsoid.

The first action by the analyst is to select an xy plane
from the original image that passes approximately through
the center of the object being segmented (e.g., plane abcd
in Fig. 1A) and to draw a border around it (dotted line in
plane abcd). Next, the algorithm uses this border to
calculate the center of area (CoA) of the (2D) shape
defined by the border and the angle u that the principal
axis makes with the y axis. The angle of the principal axis
is calculated by using the expression:

0.5 3 arctan(2 3 µ11/(µ20 2 µ02)),

where µij are the second-order central moments of the
shape (4).

Using the Affine transform (13), the algorithm then
rotates the 3D image about the z axis through the CoA by
u, which results in the principal axis in plane abcd of
Figure 1A becoming parallel to the y axis. Figure 1B shows
the outline of the ellipsoid in Figure 1A after this rotation.

In the next step, the algorithm extracts from the 3D
image of the rotated ellipsoid (Fig. 1B, left) the yz plane at
the x position of the CoA calculated above (plane efgh in
Fig. 1B) and displays it to the analyst with a vertical line
(dashed line in plane efgh) showing the edge-on view of
the first drawn border. This line serves to direct the analyst
to the object being segmented. The analyst draws a border
around the ellipsoid (dotted line in plane efgh). Then, the
algorithm calculates from this border the CoA and the
angle of the principal axis and then rotates the 3D image
about the x axis through the CoA so that the principal axis
is parallel to the y axis. After this second rotation, the
ellipsoid is oriented so that its major axis is approximately
parallel to the y axis of the 3D image (Fig. 1C, middle).

The algorithm uses the first and second borders drawn
by the analyst to estimate the subvolume of the 3D image
containing the nucleus under consideration. This enables
further analysis to be speeded up by restricting it to this

subvolume. In general, the subvolume is set in each
dimension to twice the size of the nucleus as estimated
from the first and second drawn borders.

Next, the algorithm rotates the ellipsoid so that its minor
axes are parallel to the x and z axes of the image, which is
necessary for obtaining orthogonal borders most likely to
encompass the full extent of the ellipsoid. This is done as
follows. The algorithm displays the xz plane through the
CoA (plane ijkl in Fig. 1C) and the analyst draws a border
around the ellipsoid (dotted line in plane ijkl). The
algorithm calculates the CoA and the angle of the principal
axis of the shape defined by this border and rotates the
ellipsoid about the y axis through the CoA so the principal
axis is parallel to the z axis. (In the example shown in Fig.
1C, the principal axis, dashed line in plane ijkl, was already
approximately parallel to the z axis before rotation.) At
this point, the ellipsoid has the best possible orientation
with respect to the axes of the 3D image for drawing three
orthogonal borders in xy, xz, and yz planes that encom-
pass the full extent of the ellipsoid. The drawn border in
plane ijkl serves as the first of the three orthogonal borders
after rotation by the same amount as above.

In the final step, the analyst draws orthogonal borders
in the yz and xy planes through the center of volume
(CoV) of the object (planes efgh and abcd, respectively, in
Fig. 1C).

Stage 2: Automatic interpolation of the surface
from the three orthogonal borders. The design crite-
ria for this stage were to have the interpolated surface
exactly fit the three orthogonal borders produced in the
first stage and be smooth between them. To meet these
criteria, we employed an easily implemented geometrical
construction. The planes outlined by the three orthogonal
borders divide the object into eight octants, and interpola-
tion is performed separately for each one. Figure 2A shows
one of these octants, with the origin of the coordinate
system shifted to the intersection point of the planes. To
define the entire surface of the object in this octant, it is
necessary to calculate a z coordinate for every (x, y)
coordinate inside the plane region bounded by the x axis,
y axis, and the border in the xy plane (shaded area in Fig.
2A). For example, for the point (xi,yi,0) in the shaded area,
we will use information from the three drawn borders to
calculate zi such that the point (xi,yi,zi) lies on the surface
of the nucleus. We accomplish this in two steps. First, we
translate the border in the xz plane along the y axis to yi

(dashed line in Fig. 2B). Then, the translated border is
linearly scaled in the x direction so that the end of the
translated border, (xo,yi,0) moves to (xi8,yi,0). The dash-
dot curve in Figure 2B is the translated and scaled border,
and the value of z at (xi,yi) on it, zi

x, is an estimate of zi

based on only the drawn border in the xz plane and by
ignoring the drawn border in the yz plane. This procedure
of translation and scaling is repeated for all y coordinates
in the shaded area. Next, the equivalent procedure is
performed by using the drawn border in the zy plane to
obtain a second estimate of zi, zi

y based on only the yz
border but ignoring the xz border (Fig. 2C). Finally, we
combine the two estimates of zi: zi

x and zi
y by multiplying
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them together and dividing the result by zo. The result is a
smooth, interpolated surface over the entire octant that
exactly matches the drawn borders. Mathematically, the
interpolation procedure is given by the equation

zi 5 Zx(xi9) 3 Zy(yi9)/zo,

where Zx(x) is the value of z on the xz drawn border at x,
Zy(y) is the value of z on the yz border at y, x9i 5 xi 3 xo/x8i
and y9i 5 yi 3 yo/y8i. The value xi, yi, zi, xo, yo, zo, x8i and y8i
are defined in Figure 2.

Stage 3: Automatic optimization of the interpo-
lated surface. It is expected that the interpolated surface
of the nucleus will not be exact because stages 1 and 2

contain the following approximations: the orthogonal
borders from stage 1 may not be drawn exactly over the
true borders; they may not encompass the full extent of
the nucleus because of imperfect orientation or irregular-
ity of the shape of the nucleus; and the interpolation
algorithm cannot account for properties of the nuclear
surface that are not evident from the orthogonal borders.
Thus, we developed an automatic surface optimization
algorithm that moves the interpolated surface toward the
true surface as indicated by edge information in the
original image. It is based in a 2D version (20) and is a
variation of gray-level thinning (31). The algorithm was
designed to behave robustly in the presence of uncertain-
ties (e.g., noise) by letting uncertainties stop the optimiza-
tion prematurely. This introduced the possibility that the
resulting surface was intermediate between the interpo-
lated and true surfaces but prevented the resulting surface
from deviating significantly from the true surface.

In the first step, the algorithm measures the likelihood
that each voxel is on the surface. Because the segmenta-
tion procedure is intended for images of internally stained
nuclei, where large changes in image intensity exist at the
surface of nuclei, the magnitude of these intensity changes
(edge strengths) at each voxel in the original image are
used as an indication of this likelihood. The edge strengths
are taken as the magnitude of the response from a
derivative Gaussian filter with a standard deviation of 1.5
voxels applied in the x, y, and z directions to the image.

In the second step, optimization takes place by remov-
ing voxels from the surface if such action increases the
average edge strength over the surface of the nucleus.
Average edge strength is defined as the sum of the edge
strengths of the voxels on the surface divided by the
number of these voxels. The algorithm performs this task
by successively visiting each of these voxels. For each one,
the average edge strength of the surface within the 3 3
3 3 3 voxel volume surrounding the voxel under consider-
ation is calculated. Next, the voxel under consideration is
temporarily removed, the new surface voxels in the 3 3
3 3 3 volume is identified, and the average edge strength
of the new surface within the 3 3 3 3 3 volume is
calculated. If the average edge strength of the new surface
is greater than that of the old surface, the voxel is
permanently removed. If after visiting every voxel on the
initial surface at least one voxel was removed, then the
algorithm repeats.

In the third step, optimization takes place in an analo-
gous way, except that voxels are added to rather than
removed from the surface. Removal of voxels is performed
first because analysts usually draw borders slightly outside
the nucleus, leading to an interpolated surface slightly
larger than the nucleus.

After optimization, the analyst decides whether to keep
the optimized surface or revert to the interpolated one
from stage 2. Optimization may not be desirable when
segmenting extremely low contrast and noisy images in
which false edges, from artifacts outside and inside the
nuclei but close to the nuclear surface, may be stronger
than the edge strengths of the surface. In this situation,

FIG. 2. Interpolating the surface from the three orthogonal drawn
borders. A: An octant from a 3D image showing schematically segments of
the three orthogonal drawn borders drawn around a nucleus; (xi,yi,zi) is a
point on the surface of the nucleus and will be estimated by stage 2 of the
algorithm. B: The dashed line from (0,yi,z0) to (x0,yi, 0), is a translation in
the y direction of the drawn border in the xz plane. The arrows parallel to
the y axis indicate the translation that took place. The dash-dot line from
(0,yi,z0) to (x8i, yi, 0) is the dashed line after linear scaling in the x direction,
so that z 5 0 at the intersection of the dash-dot line and the xy border,
(x8i, yi, 0). The arrows parallel to the x axis indicate the scaling. C: The
dashed line from (xi,0,z0) to (xi,y0,0) is a translation in the x direction of
the drawn border in the yz plane. The dash-dot line from (xi,0,z0) to
(xi,y8i, 0) is the dashed line after scaling, so that z 5 0 at the intersection of
the dash-dot line and the xy border, (xi,y8i, 0).

2793D INTERACTIVE SEGMENTATION OF NUCLEI
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optimization is at risk of moving the interpolated surface
toward the false edges and further away from the correct
surface. Another example when optimization is not desir-
able is in DNA ploidy measurements, which require
measuring the integrated fluorescence signal from indi-
vidual nuclei. Because of the PSF of the microscope, some
of the signal is recorded in voxels that are outside the
nucleus. In this situation, the most accurate measurements
are obtained by using segmented objects that are deliber-
ately too large rather than using objects whose surface
accurately match those of the nuclei (19).

Preparation of Computer-Generated Test Objects

To test the performance of the segmentation procedure,
artificial 3D solid, gray-valued objects that had similar sizes
and shapes to nuclei of thick tissue sections imaged by
confocal microscopy were generated.

The first two objects were spheres with diameters of 20
and 50 voxels. For an actual nucleus of diameter 7.5 µm,
they would correspond to voxel sizes of 0.375 and 0.15
µm, respectively. These were similar to the voxel size of
the 3D images of tissue specimens used in this study. The
third object was the ellipsoid shown in Figure 1A, which
had a major axis of 30 voxels. These three objects are
regular ellipsoids and the algorithm will by design cor-
rectly orient the objects in the image (stage 1) and
accurately interpolate the surfaces (stage 2). However, the
algorithm is not explicitly designed to produce a correct
segmentation for less regular objects; therefore, it was
tested with such objects. The fourth and fifth objects were
a curved ellipsoid and curved disc, respectively, and were
designed to represent the shape of a nucleus when
another nucleus appeared to push into it. The curved
ellipsoid was generated from a straight ellipsoid of major
axis of 30 voxels and minor axes of 10 voxels. It was bent
so that the major axis became a quarter circle, resulting in
a shape similar to a fat banana. It was then oriented so that
the line joining the ends of the major axis was along the
opposite corners of a cubical 3D image. The curved disc
was generated from a straight ellipsoid with the major axis
and one of the minor axes, both equaling 30 voxels, and
the other minor axis equaling 10 voxels. It was bent so that
the major axis became a quarter circle and then bent again
so that the long minor axis also formed a quarter circle.
The direction of the second bend was such that the ends of
the major axis and long minor axis lay in a plane. It had the
appearance of a satellite dish. The combination of the two
bends introduced a concavity on the side of the disc facing
the common center of the two quarter circles. The
concavity is visible in Figure 3. The object was oriented so
that the ends of the major axis were approximately along
the z axis and the ends of the long minor axis were
approximately along a diagonal line at 450° in the xy
plane. The sixth object was a dumbbell generated from
two spheres of diameter 20 voxels, which were superim-
posed so that the line joining their centers was 12 voxels
long and parallel to the z axis. The object was then rotated
20° about the y axis. This object could represent either a
single bipolar nucleus or two touching, partially spherical

nuclei such that the interface between them was a flat
circular surface.

Acquisition, Preparation, Staining, and Imaging
of Tissue Specimens

Skin specimens were obtained from the archives of the
Dermatopathology Section of the Departments of Pathol-
ogy and Dermatology (UCSF) and a breast cancer speci-
men was obtained from the Department of Pathology
(California Pacific Medical Center, San Francisco). All
specimens had been fixed in 10% neutral buffered formalin
and processed with standard histological paraffin-embed-
ding techniques. They were cut into 20-µm-thick sections
and stained with propidium iodide (PI) at 0.1 µg/ml to
label the nuclei internally (37). The centromeric regions of
chromosome 1 were also stained by using fluorescence
ISH (FISH) (37), but analysis of FISH signals is not part of
the present study. The skin specimens were imaged with
an MRC-1000 confocal imaging system (Bio-Rad Microsci-
ence Ltd., Hemel Hempstead, England) equipped with a
Diaphot 200 microscope (Nikon Inc., Instrument Group,
Garden City, NY), a 603, 1.4 NA planapo objective lens
(Nikon), and an Argon/Krypton (Ar/Kr) laser. The fluores-
cein-labeled probe and the PI were imaged simultaneously
by using the 488- and 568-nm laser lines and collecting the
emission light between 522 and 535 nm (fluorescein
signal) with one photo multiplier tube (PMT) and light
longer than 585 nm (PI signal) with another PMT. The
breast specimen was imaged with a laser scanning micro-
scope 410 (Carl Zeiss Inc., Thornwood, NY) equipped
with an Axiovert 100 microscope (Zeiss), a 63X, 1.4 NA

FIG. 3. Interactive segmentation of the curved disk. A: An xy plane
through the center of the curved disk, without noise (left) and with
Poisson noise added such that the SNR is 1.0 (middle). On the right is a line
profile across the middle image at the position indicated by the horizontal
arrow. The two vertical arrows indicate the edges of the curved disk.
B: Results of interactive segmentation (without optimization) on the
curved disk. The xy, xz, and yz planes pass through the center of the disk
in the original image and show the true surface (thick lines) and
interpolated surface (thin lines). Arrows indicate regions at the ends of the
curved disk where large deviations between the true and interpolated
surface exist. C: Results after optimization of the interpolated surface.
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plan-apochromat objective lens (Zeiss), and an Ar/Kr laser. The
fluorescein-labeled probe and the PI were imaged sequentially.
First, the fluorescein label was imaged by using the 488-nm
laser line and collecting emissions between 515 and 565 nm;
then, the PI was imaged by using the 568 nm laser line and
collecting emissions longer than 590 nm. On both confocal
microscopes, a series of 2D optical sections, 0.5 µm apart,
were acquired starting above the top surface of the section and
extending below the bottom surface. A zoom of factor 2.0 was
used during the scanning, resulting in a voxel size of 0.18 µm
in the x and y dimensions for the skin specimens and of 0.2 µm
for the breast specimen. Each optical section from the skin
specimens was the average of three successive scans. Images
were transferred to a UNIX workstation for archiving and
analysis.

Algorithm Evaluation Using the
Computer-Generated Objects

The computer-generated objects were segmented with
and without optimization. The sixth object was segmented
under two assumptions of what the object actually repre-
sents, first as a single dumbbell and second as two
touching partial spheres. The segmentation results were
assessed visually and objectively. Objective assessment
consisted of counting the number of voxels in the true
object that were not in the segmented object (false
negatives, FN), and number of voxels in the segmented
object that were not in the true object (false positives, FP).
For all objects, it was observed that without optimization
FP was much larger than FN, which was consistent with
the analyst drawing slightly outside the objects. Therefore
a single, 6-connected 3D binary erosion was applied to the
segmented objects. This application made FN . FP for
some objects and FP . FN for others. Next, for each
object, the distance of each voxel on the surface of the
segmented object to its closest voxel on the surface of the
true object was calculated. This calculation was imple-
mented by using the Euclidean distance transform (26) to
calculate the distance from every voxel in the 3D image to
the closest voxel on the surface of the true object. These
distances were assigned to each voxel on the surface of the
segmented object. They were used to calculate the aver-
age distance of the segmented surface from the true
surface and the distribution of distances over the seg-

mented surface voxels for each object (i.e., the proportion
of segmented surface voxels on the true surface, where
distance 5 0, the proportion between 0 and 1 voxels from the
true surface, the proportion between 1 and 2 voxels, etc.)

The results from this analysis were poorest for the 50
voxel diameter sphere and the curved disc (Table 1);
therefore, these objects were used further to assess the
optimization stage, the effects of noise, and analyst variabil-
ity. These two objects were segmented twice more to
assess analyst variability. Next, noise was added to the
images of these objects. The SNR was defined as

SNR 5 (mo 2 mb)/(so
2 1 sb

2)0.5,

where mo is the mean intensity inside the object, mb is the
mean intensity in the background of the image, so is the
standard deviation of the intensities inside the object, and
sb is the standard deviation of the intensities of the
background. Noise was added at levels to make the SNR
0.5 for the sphere image and 1.0 for the curved disc image.
These were the lowest SNRs in which the objects re-
mained visible (Fig. 3A, middle). Four types of noise were
added to each image: Gaussian, Poisson, uniform and
binary, and each image was segmented once for each type
of noise with and without optimization.

Algorithm Evaluation Using Tissue Specimens

The 3D images of the tissue specimens were segmented
directly without any preprocessing such as interpolation
to create isometric voxels. They were segmented with and
without the optimization stage. Assessment of the results
was done by visual examination because not knowing the
true surfaces of the nuclei precluded the use of more
objective assessment.

RESULTS
Computer-Generated Objects

Table 1 shows the average distances between the
segmented surfaces before optimization and the true
surfaces and the distribution of the distances between the
segmented and true surfaces for the noise-free computer-
generated objects for the first time these objects were
segmented. The average distances are generally less than 1

Table 1
Accuracy of the Algorithm When Applied to Computer-Generated Objects

Object

Average distance
between segmented

and true surface (in voxels)

Percentage of voxels on the segmented
surface that are d voxels from the true surface

d 5 0 0 , d # 1 1 , d # 2 2 , d # 3 3 , d # 4 4 , d # 5

Sphere (diameter 5 20 voxels) 0.59 45 47 7.8 0 0 0
Sphere (diameter 5 50 voxels) 0.85 28 50 19 1.8 0 0
Ellipsoid (Fig. 1) 0.54 50 43 6.5 0.4 0 0
Curved ellipsoid 0.69 38 51 11 0.7 0 0
Curved disc 0.86 33 44 18 4.2 0.9 0.3
Dumbbell as one object 0.78 35 45 18 1.8 0 0
One of the partial spheres

in the dumbbell (Fig. 4) 0.57 47 47 5.9 0.3 0 0
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voxel, although at certain places the distances from the
segmented to the true surfaces were more than 1 voxel.
Figure 1D shows the true and segmented surfaces for the
ellipsoid (which had the lowest average distance) in xy,
xz, and yz planes that pass through its center. The results
were poorest for the 50-voxel-diameter sphere and the
curved disc; therefore, these objects were used further to
assess the optimization, the effect of noise, and analyst
variability. The results (Table 2) show that optimization
significantly improves the accuracy of the final surface
(compare column 1 with 2 and column 3 with 4). After
optimization, the average distances were all less than 0.5
voxel, even in the presence of high noise. This result
corresponds to an error of less than 10% when estimating
the volume of the objects. Figure 3A shows the curved
disk before noise was added (left), after addition of Poisson
noise (middle), and a line profile through the noisy image
at the horizontal arrow. The vertical arrows in the line
profile show the edges of the curved disk. Figure 3B shows
the true surface of the curved disk overlaid with the
segmented surface before optimization from using the
image with Poisson noise added (Fig. 3A, middle). Note
that the interpolated surface was able to capture the
concavity of this object (Fig. 3B, left). The reason for the
large deviation at the ends of the disk in the xz and yz
planes (arrows in Fig. 3B) is from difficulties in visualiza-
tion of the object, leading to drawn borders that did not
accurately encompass the object. Optimization was largely
able to correct for these deviations (Fig. 3C), as it can for
other types of irregularities (protrusions and indentations)
on the surface of objects (results not shown). The small
standard deviations relative to the means in columns 1 and
3 of Table 2 show that analyst variability was not a major
source of error. Furthermore, these standard deviations
drop to very low values after optimization (columns 2 and
4 of Table 2) because of the robustness of the optimization
algorithm. Overall, the accuracy of the segmentation
procedure using optimization was considered adequate
for many applications.

Three types of error exist in stages 1 and 2 of the
segmentation procedure: first, the analyst is imprecise in
drawing borders; second, the method of measuring the
orientation of the object and rotating it does not always
result in three orthogonal borders encompassing the full
extent of the object, thus leading to a segmented object
smaller that the true object; and third, the interpolation

algorithm cannot precisely determine the entire surface
from the borders. All three errors are dependent on the
complexity of the true shape of the object.

The first error occurs because of the analyst’s impreci-
sion when drawing borders. This error increases in an
absolute sense with the size of the objects because the
displays used for drawing borders contain more and
smaller surface voxels for the larger objects. This error is
observed when comparing the results for the two spheres
listed in Table 1. The average distance between the
segmented and true surfaces of the 20-voxel-diameter
sphere (0.59) is less than that of the 50-voxel-diameter
sphere (0.85). However, the average distance relative to
the radius of the sphere is 0.017 for the large sphere,
which is smaller than the relative average distance for the
small sphere of 0.030. The other two types of errors for the
two spheres would be expected to behave similarly.

The second error occurs because on occasions the three
borders drawn after rotation of the object do not encom-
pass the full extent of the object. This is caused by
suboptimal determination of the orientation of the object
and becomes worse as the objects become less regular in
shape. This is indicated in Table 1 by the greater average
distances for the curved ellipsoid, curved disk, and dumb-
bell as one object (distances from 0.69 to 0.86) versus the
more regular objects of similar volume, i.e., the 20-voxel-
diameter sphere, ellipsoid, and one partial sphere of the
dumbbell (distances from 0.54 to 0.59). The curved disk
also had the greatest proportion of surface voxels two or
more voxels from the true surface (5.4%) in part because
of this error.

Errors from the third source occur because the interpo-
lation algorithm (stage 2) cannot account for properties of
the surface that are not evident from the orthogonal
borders. This error increases for increasingly irregular
nuclei, but it also exists for regular nuclei. For example,
even if the orthogonal borders were drawn perfectly
around the full extent of the ellipsoid shown in Figure 1,
the interpolation algorithm would still not give an exact
result because it does not explicitly fit an ellipsoid be-
tween the borders. The error in this case would be an
underestimate of its size, equaling an average distance
between the segmented and true surfaces of 0.1 voxel.
Also, the interpolation algorithm will generally produce
slightly different results if the z axis is interchanged with
the x or y axis.

Table 2
Accuracy of the Algorithm With and Without Optimization When Applied to Computer-Generated

Objects With and Without Noise a

Object
No noise,

no optimization
No noise,

with optimization
With noise,

no optimization
With noise,

with optimization

Sphere (diameter 5 50 voxels) 0.75 6 0.13 0.23 6 0.02 1.11 6 0.39 0.33 6 0.01
n 3 3 4 4

Curved disc (Fig. 3) 0.96 6 0.11 0.42 6 0.03 0.96 6 0.19 0.46 6 0.02
n 3 3 4 4

aResults are expressed as the mean 6 sample standard deviation of the average distances between the
segmented and true surfaces in voxels. n, number of segmentations performed. For the noisy images
(columns 3 and 4), the results from the four different types of noise are combined.
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The optimization algorithm does not produce perfect
results even for the noise-free images for two reasons.
First, the surface of the object is defined as the set of object
voxels adjacent to background voxels, but the edge
strengths of background voxels (based on our definition of
edge strength) adjacent to the object can be as high or
higher than the edge strengths of the adjacent surface
voxels, depending on the shape of the object. Conse-
quently, the optimization algorithm will in places incor-
rectly move the surface out by 1 voxel to the adjacent
background voxel. The other source of imperfect results
after optimization is when the nonoptimized surface
deviates by a large distance from the true surface. In this
situation, continuously increasing edge strengths may not
exist everywhere between the nonoptimized surface and
the true surface, thus causing the optimization to stop
prematurely. This error partly explains the poorer results
for the curved disk compared with the 50-voxel sphere
(column 4 of Table 2) because of the large deviation
between the interpolated and true surfaces at the ends
(Fig. 3B). Noise in the images increases the error after
optimization (column 4 vs. column 2 in Table 2) because
noise creates additional voxels with high edge strengths.

One of the attributes of our segmentation algorithm is
that the analyst draws in orthogonal planes that cut
approximately through the center of the object, which are
the most suitable planes for visualizing the overall shape of
the object and for discerning its surfaces. The effectiveness
of this approach is illustrated by the segmentation of the
dumbbell, where the axis between the centers of the two
partial spheres comprising this object makes an angle of
20° with the z axis. Figure 4A shows the set of consecutive
xy planes (analogous to a standard confocal z series of
images) through the central region of the dumbbell, where
both partial spheres are present. It is essentially impossible
to see that this object may be made up of two partial
spheres from these planes; the only hint is a pair of
opposing indentations in the middle plane (arrows in the
middle image of Fig. 4A). Thus, it would be very difficult to
segment them by the conventional method of drawing
around them in each xy plane. However, in the method we
describe, which displays the object from different direc-
tions, the neck between the two spheres is clearly recog-
nized. Figure 4B shows the resulting segmentation of one
of the partial spheres in the same xy planes as shown in
Figure 4A. The last plane appears to show significant
deviation between the segmented and true surfaces. How-
ever, the distance between the true and interpolated
surfaces is actually not more than 1 voxel in the direction
perpendicular to the plane of this plane.

Tissue Specimens

Figure 5A,B shows xy planes through a 3D image of the
epidermal layer of normal skin overlaid with the seg-
mented surfaces of the nuclei before and after optimiza-
tion, respectively. The surfaces before optimization are
slightly larger than the nuclei, reflecting the tendency of
the analyst to draw slightly outside the nucleus, but after
optimization the segmented surfaces closely match the

surfaces of the nuclei as judged by visual examination.
Figure 5C is a surface rendering (AVS) of the three
segmented nuclei before optimization.

Figure 6 shows the results of segmenting a 3D image of a
histologically normal region of the tissue section from the
breast cancer specimen. The left column shows xy and xz
plane pairs through the approximate center of the first
three (of a total of 29) segmented nuclei. The middle
column is the same image overlaid with the surfaces
before optimization. The arrows and arrowheads indicate
examples of background inside the segmented regions and
parts of nuclei outside the segmented regions, respec-
tively. These imprecisions in the position of the surfaces
were corrected by optimization, producing the surfaces
shown in the right column. Similar results were obtained
for the other 26 nuclei.

The segmentation method was applied to an image of a
malignant melanoma specimen that was deliberately se-
lected because of its low contrast, high noise, and high
clustering of nuclei. These features are indicated in the
line profile in Figure 7E and made segmentation by
drawing the border of each nucleus in successive xy
planes impossible. Figure 7A–D shows xy and xz planes
from the 3D image overlaid with the interpolated surfaces.
For this image, we did not expect optimization to improve
the result over the interpolated one. We also hypothesize
that no automatic method could segment these nuclei.

DISCUSSION
In the present study, we developed an interactive

algorithm for segmenting objects in 3D images and illus-

FIG. 4. Interactive segmentation of the dumbbell. A: Set of five
consecutive xy planes through the central part of the dumbbell where
both partial spheres forming the dumbbell are present. The arrows in the
middle plane indicate the interface between the two partial spheres. B:
Results of the interactive segmentation (without optimization) showing
the true surfaces of the two partial spheres forming the object (thick lines)
and the interpolated surface for the left object (thin line).

FIG. 5. Interactive segmentation of a 3D image of normal skin. A,B: The
xy plane from the original 3D image overlaid with the nuclear borders
determined by the segmentation procedure before (A) and after (B)
optimization. C: Wire frame surface rendering of the three segmented
nuclei before optimization.
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trate its application to confocal images of nuclei inside
thick tissue sections. It was developed to provide a way to
segment all nuclei within intact tissue sections of cancer
specimens. Its application will be in cancer biology studies
in which individual nuclei must be analyzed within the
context of their environment and to provide a means to
verify the performance of automatic segmentation algo-
rithms that are now under development. Our approach
has important advantages over the standard interactive
method of drawing around the nucleus in each successive
xy plane because one draws only five borders per nucleus
and in planes that cut approximately through the center of
the nucleus where borders are most visible. The remainder
of the surface of the object is filled by using interpolation.
Our method is reasonably accurate, even for nonellipsoi-
dal objects, but extensions of the algorithm to improve its
speed and accuracy for less regular objects could be
conceived. Speed could be increased by adopting the
semiautomatic contour extraction method of Wu and
Barra (39). This method requires the analyst to specify four

contour points in a 2D plane, from which the complete
border in the plane is interpolated. Accuracy could also be
increased by using the drawn borders to predict the
regularity of the shape of the nucleus and then require, if
necessary, that the analyst draws additional borders around
the object. However, this would increase the amount of
interaction by the analyst and thus reduce the advantage of
our method over drawing around the object in every
successive plane. Instead, we chose to provide an optimi-
zation algorithm that adjusted the interpolated surface to
reflect the true surface more accurately.

The accuracy of the method was assessed by using
computer-generated objects, and its capabilities and limita-
tions were demonstrated on confocal 3D images of tissue
(Figs. 5–7). Normal skin nuclei were sufficiently regular
and convex in shape to be well segmented by the first two
stages of our method, as was found also by Wu and Barra
for interactive segmentation of 2D images (39). For the
same reasons, the optimization stage resulted in very
accurate segmentation of these nuclei based on visual
judgment. Similarly, accurate results were obtained when
segmenting a breast cancer image. However, in this case,
optimization was necessary to correct for inaccuracies in
the interpolated surfaces caused by the more irregularly
shaped nuclei. Application to a low contrast, noisy image
of malignant melamona containing highly clustered nuclei
showed that our interactive segmentation was still success-
ful when other existing methods would be expected to
fail. However, the accuracy of the segmentation in this
images was particularly difficult to determine because the
poor quality made visual interpretation uncertain. Never-
theless, we are confident that each segmented object
corresponds to an individual nucleus.

Ongoing development efforts can be expected in due
course to lead to automatic algorithms that correctly
segment a greater proportion of nuclei from 3D images.
Some of these improvements can be foreseen by the
extension of 2D nuclear segmentation algorithms to 3D

FIG. 6. Interactive segmentation of a 3D image from the breast cancer
specimen. The left column is xy and xz image planes through the
approximate center of three nuclei. The middle column is the same
images overlaid with the interpolated surfaces of the nuclei from stage 2 of
the algorithm. The arrows and arrowheads show examples of background
inside and parts of nuclei outside the segmented regions, respectively. The
right column shows the images overlaid with the surface after optimiza-
tion in stage 3 of the algorithm.

FIG. 7. Interactive segmentation of a 3D image of melanoma. A–D: The
xy (A and B) and xz (C and D) planes overlaid with the interpolated
surfaces (before optimization). The arrow in A indicates the position of
the xz plane and the intensity profile (E). The arrow in C indicates the
position of the xy plane and the intensity profile. E: Intensity profile at the
position of the arrows in A and C.
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and the adoption of algorithms for other applications,
particularly those used in medical image analysis. Promis-
ing 2D automatic algorithms include those by Lockett and
Herman (18) who used the gray-weighted distance trans-
form (30) to combine image intensity information and a
priori morphological information about nuclei in a way
that was insensitive to noise and signal variations inside
the nuclei. When tested on clustered nuclei (those nuclei
not correctly segmented by only intensity thresholding of
the image), more than 90% were correctly segmented in
images of 2-µm breast and prostate sections. Similar results
were obtained by Malpica et al. (23) on peripheral blood
and bone marrow preparations. They used the morphologi-
cal gray-scale reconstruction method of Vincent (38) to
separate clustered nuclei. Dow et al. (9), by using a
method that combined intensity information of the origi-
nal image and shape information in the form of the
distance transform, correctly segmented more than 85% of
nuclei in 6-µm human melanoma sections. Their method is
in concept similar to deformable boundary and surface
methods that are currently being developed for segmenta-
tion of medical images (5). Many other promising auto-
matic algorithms have been published, for example, the
Hough transform (16), region growing (2,35,40), and
morphology (24,36) based techniques. However, their
practical utility is less predictable because their evaluation
using sufficient numbers of nuclei has not yet been
reported.

The medical imaging field offers a number of promising
algorithms that could be applied to nuclear segmentation.
Some of these algorithms seek to optimize the surface of
the object by balancing edge/region parameters measured
from the image with a priori information about the shape
of the object (5,6,22,25). Others use a multiscale represen-
tation in which coarse scale information is used to obtain
partial results that are used to guide the final segmentation
obtained when using the fine scale information (10,28).
These approaches, however, do not address in a direct
way the problem of defining the surface between two
different but clustered objects. However, they could offer
improvements over our current optimization stage. An-
other improved optimization method may be the dynamic
programming approach of Starink and Gerbrands for
finding the globally optimal surface starting from an
approximate surface (32). At present, many of these
algorithms are too slow for segmenting large numbers
(hundreds) of objects in an image.

Practical applications of the algorithm we present are
envisioned for studies that require measurements on
individual cells within the context of their environment.
The necessary segmentation accuracy depends on the
particular measurements. For example, if one is studying
tissue architecture, as was done by Bigras et al. (3) to
classify neuroendocrine tumors, then what is of primary
importance in terms of segmentation is a one-to-one
correspondence between the segmented objects and indi-
vidual nuclei rather than accurate delineation of the
surface of each nucleus. Our method would be 100%
correct for this task as judged by visual examination of our

images. An application where more accurate segmentation
would be necessary would be studies measuring the
volume of small groups of diseased cells in premalignant
lesions. By keeping the tissue intact, small aberrant groups
can be identified, but many would be lost by other
techniques, such as flow cytometry (12). In such a study
done by Irinopoulos et al. (12) on prostate lesions,
significant differences were detected in the mean nuclear
volume of nuclei in hyperplastic regions versus prostatic
intraepithelial neoplasia (PIN), well-differentiated carci-
noma and poorly differentiated carcinoma, and PIN re-
gions versus well-differentiated carcinoma. These differ-
ences were observed when the coefficient of variation for
the mean volume within each of the disease stages was
18% or greater. Because our method can measure nuclear
volumes to less than 10% error, we would also be able to
do this study. In conjunction with stoichiometric DNA
staining and quantitative image acquisition, our method
could be used for measuring the DNA content of individual
nuclei in tissue sections (7,12,29). Similarly, in conjunc-
tion with techniques for automatically (27) or interactively
(17) detecting punctate FISH signals, our method could be
used for enumerating FISH signals per nucleus and for
measuring the spatial positions of them within each
nucleus (8,11,14).
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APPENDIX:

INSTRUCTIONS FOR OPERATING
THE ALGORITHM

(1) Begin execution of the algorithm by entering the
name of the algorithm followed by the file name of the 3D
image for segmentation. The algorithm will provide a
gray-scale display of the top xy plane of the nuclear
counterstain component of the 3D image.

(2) Step down through the xy planes of the 3D image
by clicking the right mouse button in the top half of the
gray-scale display. (Step back up by clicking in the bottom
half.) Stop at an xy plane that appears to pass through the
center of the nucleus to be segmented (see plane abcd in
Fig. 1A for an example).

(3) Drawing the first border. Using the left button, click
at successive points around the edge of the object. The
successive points will be joined by straight lines. Use the
right button to undo actions of the left button. When you
have almost completed the loop around the object, use the
middle button to join the last point to the first.

(4) Drawing the second border. After a delay of about a
second, the algorithm will display an orthogonal plane
overlaid with a vertical yellow line. (The vertical yellow
line is the edge-on view of the border drawn in the
previous step; see plane efgh in Fig. 1B). Draw two
successive loops around the object. The first starts at the
top of the yellow line, proceeds with the object to the
right of the direction of travel, and ends at the bottom of
the yellow line. The second continues around the object in
the same direction, starting at the bottom and ending at
the top.

(5) Drawing the third border. Repeat the previous step
(see plane ijkl in Fig. 1C).

(6) Drawing the fourth border. Repeat the previous
step, except this time the yellow line is horizontal. Start at
the left (see plane efgh in Fig. 1C).

(7) Drawing the fifth border. Repeat the previous step,
except this time there is a vertical and a horizontal yellow
line. Start at the top of the vertical line and proceed to the
right end of the horizontal line. Continue in the same
direction until the object has been circumnavigated (see
plane abcd in Fig. 1C). At this point, the algorithm will take
a few seconds to perform the interpolation and the surface
optimization (if requested). The segmented object is
blacked out in the 3D image so it cannot be accidentally
segmented again.

(8) Continue from step 2 to segment more objects.
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